DoubleML for Python and R

Tutorial: A state-of-the-art framework for double machine learning
Online Causal Inference Seminar, Stanford (virtual)

Philipp Bach1, Victor Chernozhukov2, Sven Klaassen1,3, Malte Kurz4, Martin Spindler1,3

1University of Hamburg, 2MIT, 3EconomicAI, 4Technical Unversity of Munich
April 18, 2023

DoubleML for Python and R



Find the slides as a PDF here.

Thank you!

Contact

In case you have questions or comments, feel free to contact us

Hexagon Stickers

👇 Order a free package sticker 👇

https://forms.gle/CWAHEh8RxQJi8V3m9


Acknowledgement

We gratefully acknowledge support by EconomicAI 🙏

EconomicAI - Causal ML for Business Applications.





References

References

Becker, Marc, Michel Lang, Jakob Richter, Bernd Bischl, and Daniel Schalk. 2020. Mlr3tuning: Tuning for ’Mlr3’. https://CRAN.R-project.org/package=mlr3tuning.
Binder, Martin, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars Kotthoff, and Bernd Bischl. 2021. “Mlr3pipelines - Flexible Machine Learning Pipelines in r.” Journal of Machine Learning Research 22 (184): 1–7. http://jmlr.org/papers/v22/21-0281.html.
Chang, Winston. 2020. R6: Encapsulated Classes with Reference Semantics. https://CRAN.R-project.org/package=R6.
Chen, Tianqi, and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System.” In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–94. KDD ’16. San Francisco, California, USA.
Dowle, Matt, and Arun Srinivasan. 2020. Data.table: Extension of ‘Data.frame‘. https://CRAN.R-project.org/package=data.table.
Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, et al. 2020. “Array Programming with NumPy.” Nature 585 (7825): 357–62. https://doi.org/10.1038/s41586-020-2649-2.
Ke, Guolin, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. “Lightgbm: A Highly Efficient Gradient Boosting Decision Tree.” Advances in Neural Information Processing Systems 30: 3146–54.
Lang, Michel, Quay Au, Stefan Coors, and Patrick Schratz. 2020. Mlr3learners: Recommended Learners for ’Mlr3’. https://CRAN.R-project.org/package=mlr3learners.
Lang, Michel, Martin Binder, Jakob Richter, Patrick Schratz, Florian Pfisterer, Stefan Coors, Quay Au, Giuseppe Casalicchio, Lars Kotthoff, and Bernd Bischl. 2019. mlr3: A Modern Object-Oriented Machine Learning Framework in R.” Journal of Open Source Software. https://joss.theoj.org/papers/10.21105/joss.01903.
McKinney, W. 2010. Data Structures for Statistical Computing in Python.” In Proceedings of the 9th Python in Science Conference, 56–61. https://doi.org/10.25080/Majora-92bf1922-00a.
Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, et al. 2011. “Scikit-Learn: Machine Learning in Python.” Journal of Machine Learning Research 12 (85): 2825–30. http://jmlr.org/papers/v12/pedregosa11a.html.
Seabold, S., and J. Perktold. 2010. “Statsmodels: Econometric and Statistical Modeling with Python.” In Proceedings of the 9th Python in Science Conference, 92–96. https://doi.org/10.25080/Majora-92bf1922-011.
Sonabend, Raphael, and Patrick Schratz. 2020. Mlr3extralearners: Extra Learners for Mlr3.
Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, et al. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.” Nature Methods 17: 261–72. https://doi.org/10.1038/s41592-019-0686-2.