Becker, Marc, Michel Lang, Jakob Richter, Bernd Bischl, and Daniel Schalk. 2020.
Mlr3tuning: Tuning for ’Mlr3’.
https://CRAN.R-project.org/package=mlr3tuning.
Binder, Martin, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars Kotthoff, and Bernd Bischl. 2021.
“Mlr3pipelines - Flexible Machine Learning Pipelines in r.” Journal of Machine Learning Research 22 (184): 1–7.
http://jmlr.org/papers/v22/21-0281.html.
Chang, Winston. 2020.
R6: Encapsulated Classes with Reference Semantics.
https://CRAN.R-project.org/package=R6.
Chen, Tianqi, and Carlos Guestrin. 2016. “XGBoost: A Scalable Tree Boosting System.” In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–94. KDD ’16. San Francisco, California, USA.
Dowle, Matt, and Arun Srinivasan. 2020.
Data.table: Extension of ‘Data.frame‘.
https://CRAN.R-project.org/package=data.table.
Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, et al. 2020.
“Array Programming with NumPy.” Nature 585 (7825): 357–62.
https://doi.org/10.1038/s41586-020-2649-2.
Ke, Guolin, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. “Lightgbm: A Highly Efficient Gradient Boosting Decision Tree.” Advances in Neural Information Processing Systems 30: 3146–54.
Lang, Michel, Quay Au, Stefan Coors, and Patrick Schratz. 2020.
Mlr3learners: Recommended Learners for ’Mlr3’.
https://CRAN.R-project.org/package=mlr3learners.
Lang, Michel, Martin Binder, Jakob Richter, Patrick Schratz, Florian Pfisterer, Stefan Coors, Quay Au, Giuseppe Casalicchio, Lars Kotthoff, and Bernd Bischl. 2019.
“mlr3: A Modern Object-Oriented Machine Learning Framework in R.” Journal of Open Source Software.
https://joss.theoj.org/papers/10.21105/joss.01903.
McKinney, W. 2010.
“Data Structures for Statistical Computing in Python.” In
Proceedings of the 9th Python in Science Conference, 56–61.
https://doi.org/10.25080/Majora-92bf1922-00a.
Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, et al. 2011.
“Scikit-Learn: Machine Learning in Python.” Journal of Machine Learning Research 12 (85): 2825–30.
http://jmlr.org/papers/v12/pedregosa11a.html.
Seabold, S., and J. Perktold. 2010.
“Statsmodels: Econometric and Statistical Modeling with Python.” In
Proceedings of the 9th Python in Science Conference, 92–96.
https://doi.org/10.25080/Majora-92bf1922-011.
Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, et al. 2020.
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.” Nature Methods 17: 261–72.
https://doi.org/10.1038/s41592-019-0686-2.