Bach, Philipp, Victor Chernozhukov, Malte S Kurz, and Martin Spindler. 2021.
“DoubleML – An Object-Oriented Implementation of Double Machine Learning in R.” https://arxiv.org/abs/2103.09603.
———. 2022. “DoubleML-an Object-Oriented Implementation of Double Machine Learning in Python.” Journal of Machine Learning Research 23: 53–51.
Becker, Marc, Michel Lang, Jakob Richter, Bernd Bischl, and Daniel Schalk. 2020.
Mlr3tuning: Tuning for ’Mlr3’.
https://CRAN.R-project.org/package=mlr3tuning.
Binder, Martin, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars Kotthoff, and Bernd Bischl. 2021.
“Mlr3pipelines - Flexible Machine Learning Pipelines in r.” Journal of Machine Learning Research 22 (184): 1–7.
http://jmlr.org/papers/v22/21-0281.html.
Chang, Winston. 2020.
R6: Encapsulated Classes with Reference Semantics.
https://CRAN.R-project.org/package=R6.
Chen, Tianqi, and Carlos Guestrin. 2016. “XGBoost: A Scalable Tree Boosting System.” In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–94. KDD ’16. San Francisco, California, USA.
Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. 2018.
“Double/Debiased Machine Learning for Treatment and Structural Parameters.” The Econometrics Journal 21 (1): C1–68.
https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097.
Chiang, Harold D, Kengo Kato, Yukun Ma, and Yuya Sasaki. 2022. “Multiway Cluster Robust Double/Debiased Machine Learning.” Journal of Business & Economic Statistics 40 (3): 1046–56.
Dowle, Matt, and Arun Srinivasan. 2020.
Data.table: Extension of ‘Data.frame‘.
https://CRAN.R-project.org/package=data.table.
Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, et al. 2020.
“Array Programming with NumPy.” Nature 585 (7825): 357–62.
https://doi.org/10.1038/s41586-020-2649-2.
Kallus, Nathan, Xiaojie Mao, and Masatoshi Uehara. 2019. “Localized Debiased Machine Learning: Efficient Inference on Quantile Treatment Effects and Beyond.” arXiv Preprint arXiv:1912.12945.
Ke, Guolin, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. “Lightgbm: A Highly Efficient Gradient Boosting Decision Tree.” Advances in Neural Information Processing Systems 30: 3146–54.
Lang, Michel, Quay Au, Stefan Coors, and Patrick Schratz. 2020.
Mlr3learners: Recommended Learners for ’Mlr3’.
https://CRAN.R-project.org/package=mlr3learners.
Lang, Michel, Martin Binder, Jakob Richter, Patrick Schratz, Florian Pfisterer, Stefan Coors, Quay Au, Giuseppe Casalicchio, Lars Kotthoff, and Bernd Bischl. 2019.
“mlr3: A Modern Object-Oriented Machine Learning Framework in R.” Journal of Open Source Software.
https://joss.theoj.org/papers/10.21105/joss.01903.
McKinney, W. 2010.
“Data Structures for Statistical Computing in Python.” In
Proceedings of the 9th Python in Science Conference, 56–61.
https://doi.org/10.25080/Majora-92bf1922-00a.
Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, et al. 2011.
“Scikit-Learn: Machine Learning in Python.” Journal of Machine Learning Research 12 (85): 2825–30.
http://jmlr.org/papers/v12/pedregosa11a.html.
Seabold, S., and J. Perktold. 2010.
“Statsmodels: Econometric and Statistical Modeling with Python.” In
Proceedings of the 9th Python in Science Conference, 92–96.
https://doi.org/10.25080/Majora-92bf1922-011.
Semenova, Vira, and Victor Chernozhukov. 2021. “Debiased Machine Learning of Conditional Average Treatment Effects and Other Causal Functions.” The Econometrics Journal 24 (2): 264–89.
Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, et al. 2020.
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.” Nature Methods 17: 261–72.
https://doi.org/10.1038/s41592-019-0686-2.